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IAEA TRS No. 398 
Code of Practice for high energy photon beams

𝐷𝑤,𝑄 = 𝑀𝑄 ∙ 𝑘𝑇𝑃 ∙ 𝑘ℎ 𝑄 ∙ 𝑘𝑒𝑙𝑒𝑐 𝑄 ∙ 𝑘𝑝𝑜𝑙 𝑄
∙ 𝑘𝑠 𝑄 ∙

𝑁𝐷,𝑤,𝑄0
𝑘𝑝𝑜𝑙 𝑄0

∙ 𝑘𝑠 𝑄0

∙ 𝑘𝑄,𝑄0
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Dose accuracy limiting factors

𝑘𝑝𝑜𝑙 𝑘𝑠 𝑘𝑄,𝑄0

[TRS 398, 2000]



Portable primary standards
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The GUM-DW3 graphite ionization chamber. The GUM graphite calorimeter.



GUM portable primary standards
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The GUM-DW3 graphite ionization chamber. The GUM graphite calorimeter.



Absolute primary standards

• Calorimetry has the highest accuracy - it does not require a 
characterized field of ionizing radiation as a reference

• Ionometry method relies on Wair

• Fricke dosimetry relies on G(Fe3+)

6Absolute dosimeters. From left: calorimeter, ionization chamber and Fricke chemical dosimeter.

[Seuntjens et al., 2009]



Potential reference for new RT modalities
Conventional radiotherapy
0.1 Gy/s
Ultra High Dose Rate radiotherapy
(FLASH)     > 40 Gy/s
Ultra High Dose Pulse Rate beams
(UHDPR)

7[18HLT04 UHDpulse, 2021] [Schüller et al., 2020] 



Principle of calorimetric measurements

𝐷 =
𝐸

𝑚
= 𝑐 ∙ ∆𝑇

• c – specific heat capacity
• ∆𝑇 – temperature increase
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Graphite versus water calorimetry
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Graphite calorimetry Water calorimetry

𝑓𝑤,𝑔
(MC simulation)

𝑓𝑤,𝑤 = 1

c  = 706.9 J K−1 kg−1  

1 Gy ∆T = 1,4 mK

c = 4184 J K−1 kg−1  

1 Gy ∆T = 0,24 mK

Heat defect negligible Heat defect

Stabilisation time > 2-3 h Stabilisation time > 20 h

[Picard et al., 2006]



Calorimeter construction
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Scheme of graphite calorimeter construction: 1. core, 2. inner jacket, 3. outer jacket, 4. body, 
5. vacuum gap, 6. vacuum shield, 7. compensation (build-up) block.



Calorimeter construction
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DC Wheatstone bridge

13

Determination of the temperature of the core based on the Steinhart–Hart equation.



MONTE CARLO model
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• High energy photon beams: WFF 6 
MV, 10 MV 15 MV

• Ecut 512 keV, Pcut 1 keV
• Styrofoam casing

The GUM calorimeter model in FLUKA.

In preparation for this work, we used the resources
of the Center for Computation and Computational
Modelling of the Faculty of Exact and Natural
Sciences of the Jan Kochanowski University in
Kielce.



MONTE CARLO: Determination of 
correction factors

𝐷𝑤 = 𝑘𝑔𝑎𝑝 ∙ 𝑘𝑒𝑞 ∙ 𝑘𝑖𝑚𝑝 ∙ 𝑓𝑤,𝑔 ∙ 𝑘𝑟𝑛 ∙ 𝐷𝑔

• 𝑘𝑔𝑎𝑝 - gap correction accounting vacuum gaps

• 𝑘𝑒𝑞 - correction for equilibrium deviations

• 𝑘𝑖𝑚𝑝 - impurity correction factor

• 𝑓𝑤,𝑔 - ratio of absorbed dose to water and to the graphite core

• 𝑘𝑟𝑛 - correction for radial non-uniformity in water

15



Quasi-adiabatic mode
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Radiation off
Radiation on

Example quasi-adiabatic run. Screenshots from calorimeter control software.



Quasi-adiabatic versus isothermal mode

Operational mode Measurand Primary expression

Quasi-adiabatic with 
radiation

𝐸𝑟𝑎𝑑
𝑚𝑐𝑜𝑟𝑒

𝑐𝑔∆𝑇

Quasi-adiabatic electrical
calibration 𝑐𝑔∆𝑇

∆𝐸𝑒𝑙𝑒𝑐
𝑚𝑐𝑜𝑟𝑒

Isothermal 𝐸𝑟𝑎𝑑
𝑚𝑐𝑜𝑟𝑒

−
∆𝐸𝑒𝑙𝑒𝑐
𝑚𝑐𝑜𝑟𝑒
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[Seuntjens et al., 2009]



Specific heat capacity

• Measurement during electrical calibration

𝑐𝑔 =
𝐸

∆𝑇 ∙ 𝑚

Mean value obtained in 6-month stability control: 𝑐𝑔 = 747.481 ± 0.010 JK-1 kg-1

• Empirical model adapted to GUM calorimeter

𝑐𝑔 = 706.9 + 3 ∙ ത𝑇 − 295.15 + 33.67
ത𝑇 - mean temperature during measurements with radiation
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Calorimeter measurements

Ultra-high dose pulse rate (UHDPR) electron
beams

High energy photon beams

• conventional proton beams 225 MeV
• FLASH protons: scanning and pencil beams
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IC calibration in high energy photon
beams
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• Core positioned at 10 g/cm-2

reference depth in water
• Core-source distance 100 cm

Portable graphite calorimeter during measurements
in the Holy Cross Cancer Center.



IC calibration in high energy photon
beams
• Calibrated chambers: type PTW 

30013 with UNIDOS 
electrometers

• Polarising potential 400 V 
• Source-to-surface distance (SSD) 

90 cm

21Instrument setup during calibration. 



MU versus 
measured doses
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Dose per monitor units plots for three different 
accelerator photon beams: 
a) 6 MV, 
b) 10 MV, 
c) 15 MV. 

The linear fit is described by the following equations: 
a) y = 0,0099x + 0,0008, 
b) y = 0,0098x - 0,0081, 
c) y = 0,0097x + 0,0114. 



Calibration coefficients

𝑁𝐷𝑤 =

ൗ
𝐷𝑤

𝑄𝑐𝑜𝑟𝑟−𝑐𝑎𝑙

ൗ
𝑀𝑐𝑜𝑟𝑟

𝑄𝑐𝑜𝑟𝑟−𝐼𝐶
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Photon beam 
energy

NDw (Gy∙µC-1)

SN 9967 SN 12858 SN 2947

6 MV 53.46 53.06 53.10

10 MV 52.50 52.55 52.36

15 MV 52.29 52.14 52.15

Photon beam 
energy

Relative standard uncertainty (%)

SN 9967 SN 12858 SN 2947

6 MV 0.51 0.68 0.87

10 MV 0.43 0.56 0.45

15 MV 0.46 0.55 0.39



Measurements in conventional proton 
beams
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Graphite calorimeter with buildup material.
Measurements with calorimeter in the Cyclotron
Centre Bronowice with proton beams.



Measurements in conventional proton 
beams
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Dose* measured with calorimeter per corrected dose
measured by monitoring chamber.

* Without MC corrections!

Proton Bragg curve*.



Alternative calorimeter design

A second version of the calorimeter has been built with smaller
epoxy coated NTC thermistors. 
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Sensitivity of the calorimeter
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Single runs of the alternative calorimeter: on the left showing the sensitivity to the scanning beam
position changes, on the right without peaks thanks to using a smaller field. 



Measurements in FLASH proton beams
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Single runs of the alternative calorimeter: on the left the first calorimeter version with a heat-defect
peak caused by the thermistors glass coating, on the right the second version of the calorimeter. 



Conclusion
• GUM portable calorimeters

have been successfully tested in
a range of therapeutic beams.

• They can be used for 
calibrations of reference
dosimeters in hospital
conditions for high energy
photon-beams.

• Further work is intended for
proton and FLASH beams.

29

Measurement series with 5 FLASH beam irridiations.
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